Functions of Phenylalanine Residues within the β-Barrel Stem of the Anthrax Toxin Pore

نویسندگان

  • Jie Wang
  • Gregory Vernier
  • Audrey Fischer
  • R. John Collier
چکیده

BACKGROUND A key step of anthrax toxin action involves the formation of a protein-translocating pore within the endosomal membrane by the Protective Antigen (PA) moiety. Formation of this transmembrane pore by PA involves interaction of the seven 2beta2-2beta3 loops of the heptameric precursor to generate a 14-strand transmembrane beta barrel. METHODOLOGY/PRINCIPAL FINDINGS We examined the effects on pore formation, protein translocation, and cytotoxicity, of mutating two phenylalanines, F313 and F314, that lie at the tip the beta barrel, and a third one, F324, that lies part way up the barrel. CONCLUSIONS/SIGNIFICANCE Our results show that the function of these phenylalanine residues is to mediate membrane insertion and formation of stable transmembrane channels. Unlike F427, a key luminal residue in the cap of the pore, F313, F314, and F324 do not directly affect protein translocation through the pore. Our findings add to our knowledge of structure-function relationships of a key virulence factor of the anthrax bacillus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore.

The protective antigen component of anthrax toxin forms a homoheptameric pore in the endosomal membrane, creating a narrow passageway for the enzymatic components of the toxin to enter the cytosol. We found that, during conversion of the heptameric precursor to the pore, the seven phenylalanine-427 residues converged within the lumen, generating a radially symmetric heptad of solvent-exposed ar...

متن کامل

A Protective Antigen Mutation Increases the pH Threshold of Anthrax Toxin Receptor 2-Mediated Pore Formation

Anthrax toxin protective antigen (PA) binds cellular receptors and self-assembles into oligomeric prepores. A prepore converts to a protein translocating pore after it has been transported to an endosome where the low pH triggers formation of a membrane-spanning β-barrel channel. Formation of this channel occurs after some PA-receptor contacts are broken to allow pore formation, while others ar...

متن کامل

Ion selectivity of the anthrax toxin channel and its effect on protein translocation

Anthrax toxin consists of three ∼ 85-kD proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). PA63 (the 63-kD, C-terminal portion of PA) forms heptameric channels ((PA63)7) in planar phospholipid bilayer membranes that enable the translocation of LF and EF across the membrane. These mushroom-shaped channels consist of a globular cap domain and a 14-stranded β-barrel stem...

متن کامل

Single Particle CryoEM of the Anthrax Toxin Initial Engagement Complex

The lethality of anthrax, a zoonotic disease and bioterrorism agent, is due to the anthrax toxin. This tripartitate toxin consists of protective antigen (PA), lethal factor (LF), and edema factor (EF). The 440 kDa heptameric PA prepore binds up to three molecules of LF, a mitogen-activated protein kinase kinase protease, and/or EF, an adenylate cyclase. This entire complex, bound to receptor pr...

متن کامل

Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins.

Pore-forming toxins (PFTs) are potent cytolytic agents secreted by pathogenic bacteria that protect microbes against the cell-mediated immune system (by targeting phagocytic cells), disrupt epithelial barriers, and liberate materials necessary to sustain growth and colonization. Produced by gram-positive and gram-negative bacteria alike, PFTs are released as water-soluble monomeric or dimeric s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009